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Abstract-This paper describes the application of the Spalding-Patankar numerical integration procedure 
to the case of heat transfer from an air-cooled disc rotating close to a stationary casing. Results are calculated 
to show the effect of frictional heating, arbitrary disc temperature distributions and non-unity Prandtl 
numbers on heat transfer, and these effects are shown to be qualitatively similar to those predicted by 
Dorfman for a free disc. Mean Nusselt numbers, calculated for a range of flow parameters, tend to the 
empirical correlation of Kapinos at high Reynolds numbers but diverge at lower Reynolds numbers. The 
latter divergence is consistent with the weak dependence of Nusselt number on rotational speed noted by 

Mitchell and Kreith at low Reynolds numbers. 
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NOMENCLATURE 

a damping constant in van Driest’s 
turbulence model ; 
constant of proportionality in disc 
temperature distribution ; 
specific heat at constant pressure ; 
mass flow coefficient, E W/(pr,) ; 
gap ratio, E s/r, ; 
effective total enthalpy, 

E C,T + ~Pr,,,V$; 
relative total enthalpy, 

E C,T + $+,lr&,; 
dimensionless enthalpy difference 
used in wall-flux relations, 

= K Ah(1~6,wld3/av; 
mixing-length constant ; 
mixing-length ; 
exponent in disc temperature dis- 
tribution ; 
local Nusselt number. 

= wYCW, - T,,,Jl ; 
mean Nusselt number, 

= CIO.J/[~TO - T,,,,),,l; 
static pressure ; 
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Re, 
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s, SC. 

S:, 
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T, 
v,. v,, v:. 

7. 

W. 

Y,. 

Prandtl number ; 
heat flux ; 
radial coordinate and disc radius, 
respectively ; 
Reynolds number, E p&e/~; 
local Reynolds number used in 
wall-flux relations, 

= Pv,, relZ@, re,KZi~ ; 
axial clearance between rotor and 
stator, and rotor and shroud. 
respectively ; 
dimensionless heat flux used in 
wall-flux relations, 

= ~~wi(K~p JCL, re, Ah) ; 
dimensionless tangential shear 
stress used in wall-flux relations, 

= 74, wl(K2P vi, rel) ; 
temperature ; 
radial, tangential and axial velocity 
components, respectively ; 
mean radial velocity, 

z Wj(271prs) ; 
superimposed mass flow rate ; 
a mixing-length constant ; 
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Z. 

0. 

Suffixes 
ad, 
av, 
eff, 

0. 

r, qi z. 

rel. 
s. 
6 
W, 

J. M. 

axial coordinate measured normal 
to the rotor; 
dimensionless distance from wall 
used in wall-flux relations, 

= I%,(lr,,WIP)+!/J; 
a mixing-length constant ; 
streamwise coordinate; 
cross-stream coordinate, = I)/$ ; 
thermal conductivity; 
viscosity; 
density ; 
shear stress ; 
stream function ; 
integrated stream function. 

= w/2ir; 
angular velocity of rotating disc. 

adiabatic ; 
average ; 
effective, in turbulent flow ; 
pertaining to the rotor ; 
radial, tangential and axial direc- 
tions, respectively ; 
relative to rotor or stator; 
pertaining to the stator ; 
turbulent condition ; 
pertaining to wall. rotor or stator. 

1. INTRODUCTION 

THE CONTINUING development of the gas turbine 
engine has led to a steady increase in cycle 
temperatures with the consequent use of cooling 
air to maintain exposed components at reason- 
able temperature levels, Effective cooling of the 
turbine discs--where high pressure air is used 
to remove heat conducted from the turbine 
blades and to seal the rotor periphery, thus 
preventing the ingress of hot gas over the disc 
faces---poses many design problems. In order 
to utilize the limited supply of coolant to its 
full advantage, it is necessary to understand 
the basic process that controls heat transfer 
in this highly complicated three-dimensional 
rotating system. 

OWEN 

A fundamental study of a real turbine rotor 
system would, at the present time. be impractic- 
able owing to the complex geometry of the flow 
system. However, considerable information can 
be elicited from the model of a disc rotating 
near a stationary casing. A large amount of data 
exists for the free disc, Fig. la. and Dorfman [l] 
has produced procedures for calculating Nusselt 
numbers on free discs with arbitrary temperature 
distributions and arbitrary Prandtl numbers. 
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FIG. la. Free disc. 

(b) 

Shraud\4 
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stator \ 

(d) 

b. Enclosed disc 

c. Disc rotating near an unshrouded stator 

d. Disc rotating near a shrouded stator. 

The present author [2] has shown the condi- 
tions necessary for the Reynolds analogy to 
apply to incompressible and compressible flows, 
when frictional heating is significant, for free 
and enclosed discs, Fig. lb. For the case of a 
disc rotating near an unshrouded stator with an 
outflow of coolant, Fig. lc, Kapinos [3] has 
produced an analysis of the latter model based 
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on the Reynolds analogy, but the validity of av, 
this technique demands particular boundary r,=paz-p’&‘I (4) 

conditions which do not, in general, occur in 
gas turbines. Also, the results of Kapinos are where p is the fluid viscosity. For laminar flow 

not in accord with the experimental findings of the velocity fluctuations, represented by primes 

Kreith et al. [4] and Mitchell [5]. in equations (3) and (4) vanish. 

The fluid dynamics of the disc rotating near The continuity equation can be written 

an unshrouded stator, [6] Fig. lc, and a 
shrouded stator, [7] Fig. Id, have been investi- $(rF$ + 2 = 0, (5) 
gated by Bayley and Owen. The shrouded 
system is closer to an air-cooled gas turbine 
rotor where a peripheral shroud is used to and the energy equation can be expressed as 

control the egress of coolant and to prevent 
the ingress of hot gas. In this paper attention is pc, 
focussed on the unshrouded system, and the ( 

K;+I;-p 
> 

84 = -z+r’z 

analysis of the fluid dynamics of [6] is extended 
to include heat transfer for the case of a forced 

+t av, 
Q aZ’ (6) 

radial outflow of coolant. It is believed that 
knowledge of this relatively simple model will where C, is the specific heat at constant pressure 

serve as a foundation to the understanding of and T the temperature. The heat flux, q, is 

the more complex practical systems. related to the temperature by 

2. THE BOUNDARY LAYER EQUATIONS 

2.1. The basic equations 
q= - 

( 
AZ - pC,T’V; 

) 
(7) 

Expressed in cylindrical polar coordinates 
for a steady, incompressible, axi-symmetric where 1 is the thermal conductivity of the fluid, 

and the turbulence terms are zero for laminar flow, the radial and tangential momentum flow 
equations can be written [l] 

av, av, vi dp ar, 
P ‘/‘x+Kz-r =--&+-& 

( > 

2.2. The effective viscosity model 
(1) A two-component effective viscosity model 

has been used to good effect in the prediction 
of the fluid dynamics for this flow system, see 

(2) [6]. The Prandtl mixing-length theory was 

where V, ‘V, and V, are the velocity components 
employed in its simplest form where : 

in the radial, tangential and axial directions, W 

respectively, p is the static pressure and p is &, cff = P + &,I = P + PI2 --* 
I I aZ 

the fluid density. For turbulent flow the equa- 
tions are valid if time-average values are used. 

and 

and the radial and tangential shear stress % 
components, z, and zc respectively, are given by Pd,eff = P + l&t = P + PI2 Pg . 

I I 

and 

(3) 
The shear stresses were given by: 

av, 
7, = pL,, erf - aZ and 

% r+ = p9,eff -. az 

(8) 

(9) 

(10) 
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A simple ramp distribution of the mixing-length 
I was assumed such that : 

O<z<ayJK: l=Kz 

ay,/KGz<s-ay,/K: l=ay, 

s-ay,jK<z<s: l=K(s-z) I 

(11) 

where s is the distance between the rotating 
disc and the stator. 

The constants a, yI and K were varied over a 
range of values, and it was found that a = 012, 
y, = s/2, and K = 0.4 gave the best prediction 
of moment coefficient and pressure distribution. 
The same constants will be used for the heat- 
transfer calculations. 

Near the rotating disc and the stator the 
mixing-length is assumed to decay exponentially 
according to van Driest’s hypothesis [lo]. The 
two-component effective viscosity model enables 
use to be made of the wall flux relations of 
Patankar and Spalding [8] for the wall shear 
stresses and, as will be shown later, the wall 
heat flux It is now proposed to introduce an 
effective conductivity, &rt, where 

4 = - i,ff g (12) 

and 

;g - pC,T’V; 
aT 
Z. (13) 

[2] shows that a strong correlation exists 
between equations (2) and (a), and as a con- 
sequence heat transfer is strongly related to the 
tangential shear stress. It is therefore proposed 
that--just as for laminar flow (where 1 = ,~&dPr) 
-the effective conductivity can be expressed as : 

1 eff cc& eff _=- 

c, Pref f 
A+%. (14) 

t 

For fully developed turbulent flow Preff --) Pr, 
Kestin and Richardson [9], in their compre- 
hensive review of heat transfer in turbulent 
boundary layers, suggest that whilst experi- 

mental measurements of Pr, through a boundary 
layer are inconclusive, a constant value can be 
used as a reasonable approximation In the 
majority of the following calculations the 
turbulent Prandtl number is taken as unity, 
although the effect of non-unity values of Pr, 
is discussed. 

2.3. The transformed equations 
It is convenient to transform the boundary 

layer equations. from r, z coordinates to <, $ 
coordinates using the von Mises transformation 
where : 

V,=-----, K=-‘2 and [=r. 
1 a*, 

pr aZ pr ar 

Equations (1) (2) and (6) can now be written 

“vr- 1 dp 
d5 

___-+rf5+!5 
@Cd< W rV, 

(1% 

av- aT, v, -- 
w’r3$ r (16) 

(17) 

Using equations (15) and (16) equation (17) can 
be rewritten as 

= r&(-q + K’lz, + V&J. (18) 

Equation (18) can be simplified if the radial 
terms are negligible. Close to the rotating disc, 
where frictional effects can be significant, 
V$, 9 V, and 24 9 z, It was shown in [6] that 
the pressure distribution was, for most cases 
of interest, more strongly affected by the mass 
flow rate, W, than by the rotational speed, thus 

where e = W/(2xprs). 

If the radial velocity is relatively small, as is 
the case for air-cooled turbine rotors, the terms 



HEAT TRANSFER FROM A DISC 1139 

and I ?- (V,z,) 
a* 

can be neglected in comparison with the other 
terms. Under these conditions equation (18) 
can be simplified by introducing the new 
variables 

and 

where 

h z C,T + @-‘r,,,V; (19) 

rl = *i3 (20) 

(21) 
0 

Hence from these definitions, and using the 
effective viscosity model, equation (18) becomes 

av, - (1 - Pr,,J v&z. (22) 

Similarly, using equation (20) and the effective 
viscosity models, equations (15) and (16) can 
be rewritten as 

Equations (22~(24) are the equations that will 
be solved numerically. 

2.4. The Reynolds analogy 
For the case of Pr = Pr, = Preff = 1. the 

analogy between equations (22) and (24) is 
complete if the initial and boundary conditions 
are similar. For a quadratic temperature rise 
over the rotating disc radius and for an isother- 
mal stator the boundary conditions become 

~=O:rV+,,=or2, li0=cor2 

fj = 1 : rV+,, = 0, hs = constant 

where the subscripts 0 and s refer to the rotor 
and stator, respectively, and co is a constant. 
Under these conditions the distribution of 
tangential velocity and enthalpy are similar. 
hence 

and as 

it follows from equation (25) that 

thus 

40 = - %[C,(T, - T,) - &“r’]. 

For an adiabatic disc, q. = 0, and 

T - T, + -jw2r2~C, 0,ad - 

(25) 

(26) 

(27) 

(28) 

(29) 

which agrees with the result obtained in [2] 
despite the fact that the radial dissipation has 
been ignored in the present case. It would 
therefore appear that the neglect of radial 
effects should not reduce the generality of 
the solution procedure. 

3. NUMERICAL SOLUTION OF THE BOUNDARY 
LAYER EQUATlONS 

3.1. The numerical method 
The techniques used to solve equations 

(22H24) are an extension of the method em- 
ployed to solve the momentum equations in (6). 
The fluid dynamics predictions had been com- 
pared with results from an experimental rig at 
the University of Sussex where a 30 in. dia. 
disc was rotated up to 4500 rpm close to a 
stator of the same diameter. In those calcula- 
tions it was found that 50 radial steps, from 
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r/r0 = 0.32 to r/r, = 1. and up to 120 cross- near the rotor and the stator, and so close to the 
stream steps. for gap ratios up to G = 0.12 rotating disc, in the so-called Couette flow 
(where G - sir,). were necessary in order to region, the tangential shear stress tends to the 
achieve a satisfactory momentum balance. Initial wall value, such that r+ = z&,~. Similarly on the 
distributions of radial velocity were based upon stator, rg = z~,,, and so for rotor or stator 
a 4th power law pipe flow. and the tangential 
velocity distribution decayed from u)r on the (32) 
disc to zero on the stator according to a fth 
power law. For the calculation of heat transfer. Substituting equation (32) into equation (31) 
the distribution of enthalpy was assumed to be produces 
similar to the distribution of tangential velocity 
at the starting radius. The implicit finite- dV*, 2 

difference method used, that of Spalding and dz*, 1+(1+4 zz2 [l - exp (-z$!A*)]‘>+’ 

Patankar, [8] could be made more efficient by (33) 
the use of wall flux relations obtained from the 
solution of the ordinary differential equations Numerical solutions to equation (33) can be 

resulting from the Couette flow close to a wall. found in [8] and the answers express the wall 

Just as it had been necessary to modify these shear stress in terms of the local Reynolds 

relations close to a rotating disc for the fluid number such that: 

dynamics problem, so it was found necessary S; E zb, W/(K2p V;, ,,,) = R$, - ’ - 
to make allowances for rotation in the heat - 0.1561 R* -“‘45 + 0.08723 R* -“‘3 
transfer problem. 6 6 

+ 0.03713 R* -O”’ Q (34) 

3.2. Calculation of the wallfluxes where 
Near an impermeable wall, either the stator 

or the rotating disc, use is made of the van Rt - p V+, rerzreiK2ip. 

Driest hypothesis [lo] for the effective viscosity For the case of the energy equation, application 
in equation (9) and it is assumed that of the van Driest hypothesis gives the result : 

~~~~~~~~~ = 1 + z$‘[l - exp ( -z$JT$A*)]~ 

x pv$/az$I (30) 

where 1 - exp [ -z&/r*,)/A*l (35) 

z$ = Kz,&$.WI)+:~ (3Ia) If. by analogy with equation (32). we can define 
r$ = r&r’6,w (31b) a new variable h* such that : 

V$ = KV&, rel/(rg, W/P)+. (3lc) &. eff dh* _ 
The subscript w is used to refer to the wall. 

@reff dz*, 
1 (36) 

either rotor or stator, and z,,, and I$,,, are then equations (35) and (36) combine to give: 

the distance and velocity, respectively, relative dh* 
to that wall, I&,_, = V, - or. z,,, = z near the 
rotor, and Vi,,,, = V, - or, z,,, = s - z near 

dz*, 

the stator. K is a mixing-length constant, and A* pr, 
is a damping constant. From equation (2) it is = Pr,iPr + z$’ [l - exp ( -z$/A*)12 (dv$lz$,)’ 

apparent that the convection terms tend to zero (37) 
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The solution to equation (37) is expressed in 

r?81 as 

s: = 5 
Pr,[l + 3.68 S~~(Pr~Pr~)*(Pr/Pr~ - i)] 

where 

(38) 

(39) 

and we define h* as 

h* = K Ah&.,I#/q, (40) 

It is now necessary to derive an expression for Ah. 

3.3. The motivating temperature diflerence for 
heat transfer near a rotating disc 

In the Couette-flow region near the rotor, if 
the convection terms are small compared with 
the flux, equation (22) simplifies to : 

(41) 

which implies that 

4 - %#~#I = 40 - ‘c.#,OV~,O. 

For an adiabatic disc go = 0, hence 

qad = TqkOvirel 

where 

(42) 

(43) 

r# = Q,O and &,A = Vi - Qo. 

subscript ‘ad’ referring to the adiabatic condi- 
tion. Equation (43) can be written as 

Hence 
f%., 

C,G, ad - Tad) = j %&(3V&el)r (45) 
0 

which can be evaluated approximately by 
noting that Pr, only deviates si~i~cantly 
from Pp; in the region where V@_i is small 
and the value of the integral is correspondingly 

small. Thus equation (45) can be approximated 
by: 

C,T,,, = C,T,, + PrX$, rel- (46) 

It is interesting to observe the similarity between 
equations (46) and (29) for P1; = 1. 

We now define a variable Z such that 

z z C,T + iPr,V$,,,,. (47) 

and from equations (42) and (43) it follows that : 

(48) 

Comparing equations (48) and (36) we see that 

or 

h* = MLj - E) tIr+,olP)+/40, (49) 

Ah = E. - g. (50) 

A similar argument applied to the stator, where 
V& = I$,, yields 

Ah = x - IS. (51) 

Using Ah, as calculated from equations (50) or 
(51), the heat flux through the rotor or stator 
can be evaluated from the wall flux relation, 
equation (38). 

4. TESTING THE NUMERICAL METHOD 

Before comparisons with experimental data 
can be made it is necessary to check that the 
Reynolds analogy conditions (To = cor2, T, = 0, 
Pr = Pr, = 1) should produce similar enthalpy 
and tangential velocity profiles, and that the 
wall fluxes should be compatible. For the case 
of zero dissipation and of finite dissipation 
these conditions were fully satisfied by the use 
of h* given in equation (49). This consistency 
is a necessary condition for accuracy, but the 
accuracy of predicted Nusselt numbers can be 
no greater than the accuracy of the predicted 
frictional moment coefficients. 

As a direct consequence of the Reynolds 
analogy, the local Nusselt number, Nu, is 
related to the shear stress by 
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where 

9or 

N” = A(T, - To,,,)’ 
(53) 

For non-unity Prandtl numbers and arbitrary 
disc temperatures (To = corn, n being the arbit- 
rary exponent and co a constant) Dorfman [l] 
obtained solutions of the integral equations for 
the free disc and showed that 

Nu(Pr. n) + Nu(Pr = 1, it = 2) 

complete similarity between the initial enthalpy 
and tangential velocity distributions. any index 
other than n = 2 produced a developing flow 
condition in which the temperature and velocity 
distributions became progressively different. 
The divergence increased with increasing radius, 
and the rate of divergence varied according to 
the value of n. 

n i 2.6 

[ 1 o’2 
x Pr0’6 ~ 

4.6 ’ 
(54) 

0 r/r; =0.32 

@ r/c9 -0.55 /vu (n)//vu(n=2) K=c,_r” 

@ r/$=0.70 
) 2 

@ Free disc (Dorfmon) 

FIG. 3. Effect of radially decreasing disc temperature on axial 
temperature profiles for G = 0.03. C, = 2.5 x 104. Re = 

4 X 106. 

FIG. 2. Effect of disc temperature distribution on local Nusselt 
numbers for G = 0.03. C, = 2.5 x 104. Re = 4 x 106. 

For comparison, numerical integration was 
conducted for the case of a disc rotating near 
an isothermal stator with a radial outflow for 

Pr = 1 and a range of exponents -3 < n < 3. 

In the ensuing calculations the turbulent 
Prandtl number is assumed to be unity. and the 
axial gap is characterised by a gap ratio. G. and 
the mass flow rate is described by a mass flow 
coefficient. C, E W/(pro). Figure 2 illustrates 
the effect of disc temperature distribution on 
Nusselt number at different radial positions for 
a starting radius ratio of r/r0 = 0.3. The effect 

As the integration was commenced assuming of radial position is more evident for negative 
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values of n, and at a radius ratio of r/r, = 0.78 
heat transfer from the rotating disc is prevented 
for n < -2.6. The fact that the value equals 
the critical index in equation (54) is coincidental : 
the critical index will be smaller for larger radii 
and vice versa. 

Figure 3 shows the developing temperature 
profiles for n = -3 where, in order to show 
the effect of disc temperature profile without 
frictional heating complicating the picture, 
dissipation is neglected. Whilst the temperature 
gradient at the disc surface is originally favour- 
able for heat transfer from the disc, it gradually 
becomes smaller and eventually reverses. After 
reversal heat removed from the disc at the smaller 
radii is dumped back in at larger radii, the latter 
effect occuring despite the ostensibly favourable 
temperature difference between the rotor and 
stator. It should be noted that frictional heating 
would accelerate this heat reversal. Whilst 
negative values of n cannot occur under steady- 
state operation of gas turbines they can occur 
when the engine power is reduced and the turbine 
blades, and hence the disc tip, begin to cool. 
Under these circumstances. the failure of the 
coolant to remove heat from the disc tip would 
help to slow down the blade cooling, and could 
therefore prove advantageous. 

An undesirable situation would occur if heat 
transfer from the disc were to be reversed during 
steady-state operation. This could happen if 
the coolant temperature were not low enough to 
prevent frictional heating of the rotor. The 
effect is illustrated in Fig. 4 for an isothermal 
rotor where. owing to the rapid decay of the 
tangential velocity near the rotating disc. dis- 
sipation terms are only significant very close 
to the rotor. Although the temperature profile 
gradually changes with increasing radius. the 
gradient only reverses in the “Couette-flow” 
region : outside of this region heat is transferred 
away from the disc, whilst inside it is transferred 
into the disc. Disc heating commences at r/r0 = 

0.59 despite the apparently favourable gradient 
existing away from the disc surface. and dissipa- 
tive heat not conducted through the disc itself 

FIG. 4. Effect offrictional heating on axial temperature profiles 
for G = 0.03. C, = 2.5 x 104. Re = 4 x 106. 

serves to raise the bulk temperature of the fluid. 
The effects of heat reversal due to disc tempera- 
ture distribution and to frictional heating for the 
case of laminar impinging flow on a free rotating 
disc have been calculated by Mabuchi et al. [ 111. 
The numerical results obtained for the present 
system are qualitatively similar, but frictional 
heating is much more local in turbulent flow 
than in laminar flow owing to the steeper 
gradients associated with the former case. 

The effect of Prandtl number on heat transfer 
for T, = corz is illustrated in Fig. 5 by the ratio of 
Nu(Pr)iNu(Pr = 1) for 0.5 < Pr < 8. where 

and 

4 O’av - ---$[rqodr. (56) 

It can be seen that although the effect of 
Prandtl number does depend upon the flow 
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Curve G cw/104 Re/lO” 
I 0.12 IO 0.5 

2 0.03 2.5 I.0 

4-- 3 0.06 IO 4-o 

4 O-03 7.5 4-o 
5 

5 Free disc (Dorfman) 3.4 
3- 

2 
A-- 

l 
I 

4; 

1s i; 2 -- 

I- 

! I 
/ 

I I I I J 
0 I 2 3 4 5 6 7 8 

FIG. 5. Calculated effect of Prandtl number on the mean Nusselt number for a range of flow 
parameters. 

characteristics of the system for gases (Pr -=c 1) 
Dorfman’s correction is a good approximation. 
For large Prandtl numbers the accuracy of the 
approximation appears to depend more on 
Reynolds number than the other parameters. 
As at large Reynolds numbers the moment coef- 
ficients. measured and calculated. for this system 
tend to those of the free disc. it would appear that 
application of the free disc correction is more 
valid for Re > 106. 

It should be pointed out that calculations 
were carried out for a range of Reynolds numbers 
with Pr = 1. and Pr, varied between @6 and 1. 
It was observed that for Pr, = 0~8 the mean 
Nusselt number increased by 8 per cent at Re 

4 x 10’ to 11 per cent at Re = 4 x 106, com- 
ired with the values for Pr, = 1. A similar 
increase over the values at Pr, = 0.8 was observed 
for Pr, = 0%. Kestin and Richardson [9] have 
noted that most heat-transfer theories either 
assume Pr, = 1, or assume a constant value, 
say Pr, = 0.78, in order to obtain acceptable 
predictions. No firm recommendation can be 
made for the present system until more experi- 
mental data are available. 

The behaviour of the numerical solutions for 

arbitrary disc temperatures. arbitrary Prandtl 
numbers. and with frictional heating. is con- 
sistent-if not identical--- with that found for 
the free disc. It would therefore appear that 
the solutions of equation (22) are compatible 
with free disc calculations, and it remains to 
verify that the solutions obtained agree with 
experimental results. 

In Fig. 6 the calculated Nusselt numbers are 
compared with the experimental data of Kapi- 
nos[3]. The experiments were conducted on a 
645 mm dia. disc, placed at distances of from 88 
to 115 mm from a stator. and rotated up to 3500 
rpm The numerical solution shows better agree- 
.ment at larger gap ratios and larger Reynolds 
numbers. and the relative increase of Nusselt 
number with increasing mass flow rate is 
predicted with reasonable accuracy. At low 
Reynolds numbers the calculated Nusselt num- 
bers tend to become more dependent on mass 
flow rate and less dependent on rotational speed. 
This effect is consistent with the Reynolds 
analogy [2] applied to the moment coefficients 
of Bayley and Owen [6]. and is in qualitative 
agreement with the results of Kreith et aZ.[4] and 
Mitchell [5]. 
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It should also be pointed out that some of 
the experimental values used for comparison in 
Fig. 6 were obtained by extrapolating Kapinos’ 
empirical correlation outside of its verified range. 

Although no experimental local Nusselt num- 
bers are available for comparison, Fig. 7 shows 

_ c,- 105 
Kaplnos -.-- c,- 5x 104 

‘/ 

/i. 
I- /,Q’ 

0.8 , , ,d 9, I ,111 
0.4 0.6 I o-e 2 4 6 

FIG. 6. Comparison of calculated mean Nusselt numbers with 
the empirical correlation of Kapinos. 

numerically calculated results for a gap ratio 
of G = 0.06 and a mass flow rate of C, = 5 x 
104. The local Nusselt numbers, plotted for a 
range of Reynolds number, are compared with 
the free disc result based on the Reynolds analogy 
applied to von Karman’s calculated moment 
coefficient where 

The calculated Nusselt numbers are, as would 
be expected, larger than the free disc values. al- 
though the trends are not significantly different. 

Although the results of the numerical method 
are encouraging, it is apparent that more experi- 
mental data are necessary before rigorous tests 
can be applied to check the quantitative accuracy 
of the boundary layer model and its method of 
solution. A programme of research into the heat 

6 

r 

5 

4 

r 

_ NumerIcal solution 

__ Free disc, equation (57) 
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FIG. 7. Local Nusselt numbers for G = 0.06. C, = 5 x 10“. 
Pr = 072. 

transfer from a rotating disc is currently in 
operation in the Mechanical Engineering Lab- 
oratories at the University of Sussex, and it is 
hoped that future experimental data will provide 
a useful testing ground for the existing calcula- 
tion procedure. 

CONCLUSIONS 

The Spalding-Patanker numerical integration 
procedure [8] has been applied to heat transfer 
from a disc rotating near a stator, with a radial 
outflow of coolant, and the principal conclusions 
to be drawn are as follows : 

Nu = 0.0267 (rp,)“6 Pr0’6 Re’,*. (57) (i) For the case of an isothermal stator (T, = 
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(ii) 

constant) a quadratic temperature distri- 
bution over the rotating disc (T, a r’), and 
unity Prandtl numbers (Pr = Pr, = l), the 
Nusselt numbers calculated by the numeri- 
cal procedure are in exact agreement with 
the Reynolds analogy. 
For arbitrary disc temperatures (To a r”) the 
Nusselt number, whilst being radius-depen- 
dent. behaves in a manner consistent with 
Dorfman’s free disc result [l] 

(vi) Although no experimental values of local 
Nusselt number are currently available, 
the calculated values show that the effect 
of forced flow is to increase the local heat - 
transfer rate compared with that of a free 
disc. The relative increase will, however, 
depend on the gap ratio, the mass flow rate 
and the rotational speed or the system under 
consideration. 

Nu(n) + Nu(n = 1) qj [ 1 
.“.2 

The author wishes to acknowledge Rolls-Royce Limited 
for thek continuing support of this work, and to thank 
Professor F. J. Bayley for his advice and encouragement. 

(iii) The effect of arbitrary laminar Prandtl 
numbers (Pr, assumed unity) on the Nusselt 
number was found to be dependent on 
Reynolds number. For Re > 106, the results 1. 
can be approximated over the range 0.5 < 
Pr < 2 by Dorfman’s free disc result 2. 

Nu (Pr) + Pr ‘+ Nu(Pr = 1). 

Frictional heating due to tangential 
sipation was included in the solution 

3. 

(iv) dis- 4 
pro- 

cedure, and the effects ofthis are qualitatively 
similar to the predictions of Mabuchi et al. 5. 
[l l] for forced laminar flow over a free 
disc. 

(v) For high values of Reynolds numbers (Re 6 
> 106) the calculated mean Nusselt num- 7 
bers tend to the experimental results of 
Kapinos [3]. At low Reynolds numbers, and 8 
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EFFET D’UN &OULEMENT FOR& SUR LE TRANSFERT THERMIQUE DEPUlS UN DlSQUE 
TOURNANT PRl% D’UN STATOR 

Rbumk-Get article dtcrit l’application de la mtthode d’intkgration numerique de Spalding-Patankar au 
cas du transfert thermique depuis un disque tournant refroidi par air, proche d’une enceinte stationnaire. 
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Les calculs sont conduits afin de montrer I’effet sur le transfert thermique de l’echauffement par frottement 
des distributions arbitraires de temperature du disque et des nombres de Prandtl non unitaires. On montre 
que ces effets sont qualitativement similaires a ceux predits par Dorfman pour un disque libre. Des nombres 
de Nusselt moyens, calcults pour un domaine de parametres d’tcoulement, tendent vers la formule empirique 
de Kapinos pour des grands nombres de Reynolds mais divergent pour des plus petits nombres de Reynolds. 
Cette divergence est en relation avec la faible dependance du nombre de Nusseh a la vitesse rotationnelle 

not&e par Mitchell et Kreith pour des petits nombres de Reynolds. 

DER EINFLUSS VON ERZWUNGENER STROMUNG AUF DEN WARMEUBERGANG AN 
EINER SCHEIBE, DIE NAHE EINES STATORS ROTIERT 

Zusammenfassung-Die Arbeit beschreibt die Anwendung der numerischen Integrationsprozedur nach 
Spalding-Patankar auf den Warmeiibergang an einer luftgektihlten Scheme, die nahe eines feststehenden 
Gehiiuses rotiert. Die Rechenergebnisse zeigen den Einfluss von Aufheizung durch Reibung, von beliebigen 
Scheibentemperaturverteilungen und von Prandtl-Zahlen # 1 auf den Warmetibergang. Es zeigt sich, 
dass diese Einfltisse jenen qualitativ lhnlich sind, die von Dorfman fiir die freie Scheibe vorausgesagt 
wurden. Mittlere Nusselt-Zahlen, die fiir eine Reihe von Stromungsparametem berechnet wurden, stimmen 
mit der empirischen Korrelationsformel von Kapinos fiir grosse Reynoldszahlen tiberein, weichen jedoch 
bei kleinen Reynoldszahlen davon ab. Diese Abweichung steht in Einklang mit der SchwachenAbhangig- 
keit der Nusselt-Zahl von der Winkelgeschwindigkeit bei kleinen Renolds-Zahlen, wie sie von Mitchell 

und Kreith gefunden wurde. 

BJIHHHHE BbIHYXQEHHOFO TEYEHHH HA HEPEHOC TEHJIA 
OT JHICHA, BPAIIJAIOIIJEI’OCH B03JIE CTATOPA 

AEEOTB~BSI-B CTaTbe OnACbIBaeTCR IIpHMeHeHKe MeTOAa YHCJIeHHOrO RHTerpHpOBaHHH 

Cnonamra-IIaTaKKapa ~JIH cnysaR nepeHoca Tema OT oxnamRaehfor0 Bo3nyxoM mcKa, 

Bpa~alOIIJerOCR B03JIe CTa~HOHapHOti CTeHKH. ~I~MB~ARTCR pac+STbI, ~nfl Toro YTO~~I 

IIOKa3aTb BJIARHEie Ha TeIIJIOO6MeH a3pO~HHaMEiYeCKOrO HarpeBa, IIpOH3BOJlbHOrO paCIIpeAe- 

JIeHEiFI TeMIIepaTypbl AHCKa II OTKJIOHeHIlfi WlCJIa npaHATJIR OT eAMHIJI+I. HpOMe TOrO 

IIOKa3aHO,qTO 3TB 3+$eKTbI KageCTBeHHO COrJIaCyIOTCH C pe3yJIbTaTaMI4 paC+Ta aOp'$MaHa 

~JlJJCBO60~HOl'O~HCKa.Cpe~HkieWiCJla HyCCeJIbTa,paCCWTaHHbteAJIfl KaKOrO-TOAAaIla3OHa 

napaMeTpoB, npH6nmKamTc~ K 3MIlApHYeCKllM COOTHOIUeHHHM KaIIllHOCa IIpH 6onbmnx 

~KC~aX~e~HO~b~Ca,HOOTKJIOH~IH)TCROTHIlX~pIlMa~bIX~MC~aX~eiHO~b~Ca.~TOpa3~KYlle 

CBH3aHO CO cnadolt 3aBHCHMOCTblO 4klCJIa HyccenbTa OT CKOpOCTIl BpaIlleHHH, 3aMeqeHHOti 

bhTvennOM II &N?tiCOM IIpn MWIbIX WiCJIaX PetiHOJIbACa. 


