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THE EFFECT OF FORCED FLOW ON HEAT TRANSFER
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Abstract—This paper describes the application of the Spalding-Patankar numerical integration procedure
to the case of heat transfer from an air-cooled disc rotating close to a stationary casing. Results are calculated
to show the effect of frictional heating, arbitrary disc temperature distributions and non-unity Prandti
numbers on heat transfer, and these effects are shown to be qualitatively similar to those predicted by
Dorfman for a free disc. Mean Nusselt numbers, calculated for a range of flow parameters, tend to the
empirical correlation of Kapinos at high Reynolds numbers but diverge at lower Reynolds numbers. The
latter divergence is consistent with the weak dependence of Nusselt number on rotational speed noted by

Mitchell and Kreith at low Reynolds numbers.

NOMENCLATURE

a damping constant in van Driest’s
turbulence model ;
constant of proportionality in disc
temperature distribution ;
specific heat at constant pressure;
mass flow coefficient, = W/(ury);
gap ratio, = s/ry;
effective total enthalpy,
= C,T + 3PryV3;
relative total enthalpy,
= C,T + 3PrV} a:
dimensionless enthalpy difference
used in wall-flux relations,
= K Ah(|7,.,,
mixing-length constant ;
mixing-length ;
exponent in disc temperature dis-
tribution ;
local Nusselt number,
= or/[ATy — Ty W]
mean Nusselt number,
= do,ar/[MTo — To,aa)ev]
static pressure,

piq,;
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Prandtl number ;
heat flux;
radial coordinate and disc radius,
respectively ;
Reynolds number, = pw?ro/u;
local Reynolds number used in
wall-flux relations,
= pV¢, retZ, rele/# >
axial clearance between rotor and
stator, and rotor and shroud,
respectively;
dimensionless heat flux used in
wali-flux relations,
= qw/’(szVd:. rel Ah) 5
dimensionless tangential shear
stress used in wall-flux relations,
= td), w/(sz V:), rel) ;
temperature;
radial, tangential and axial velocity
components, respectively ;
mean radial velocity,
= W/Q2rprs);
superimposed mass flow rate;
a mixing-length constant;
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z, axial coordinate measured normal A fundamental study of a real turbine rotor
to the rotor; system would, at the present time, be impractic-
z3, dimensionless distance from wall able owing to the complex geometry of the flow

used in wall-flux relations,
= Kzrel(qub,w'p)f/u N

2, a mixing-length constant;

£, streamwise coordinate ;

n cross-stream coordinate, = Y/ ;

A thermal conductivity;

e viscosity ;

P density;

T, shear stress;

W, stream function ;

v, integrated stream function,
=W/2n;

w, angular velocity of rotating disc.

Suffixes

ad, adiabatic;

av, average;

eff, effective, in turbulent flow;

0, pertaining to the rotor;

r,z. radial, tangential and axial direc-

tions, respectively;

rel, relative to rotor or stator;

s, pertaining to the stator;

t, turbulent condition ;

w, pertaining to wall, rotor or stator.

1. INTRODUCTION

THE CONTINUING development of the gas turbine
engine has led to a steady increase in cycle
temperatures with the consequent use of cooling
air to maintain exposed components at reason-
able temperature levels, Effective cooling of the
turbine discs—where high pressure air is used
to remove heat conducted from the turbine
blades and to seal the rotor periphery, thus
preventing the ingress of hot gas over the disc
faces—poses many design problems. In order
to utilize the limited supply of coolant to its
full advantage, it is necessary to understand
the basic process that controls heat transfer
in this highly complicated three-dimensional
rotating system.

system. However, considerable information can
be elicited from the model of a disc rotating
near a stationary casing. A large amount of data
exists for the free disc, Fig. 1a, and Dorfman [1]
has produced procedures for calculating Nusselt
numbers on free discs with arbitrary temperature
distributions and arbitrary Prandtl numbers.
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(c) (d)
b. Enclosed disc.

c. Disc rotating near an unshrouded stator.

FiG. 1a. Free disc.

d. Disc rotating near a shrouded stator.

The present author [2] has shown the condi-
tions necessary for the Reynolds analogy to
apply to incompressible and compressible flows.
when frictional heating is significant, for free
and enclosed discs, Fig. 1b. For the case of a
disc rotating near an unshrouded stator with an
outflow of coolant, Fig. 1c, Kapinos {3] has
produced an analysis of the latter model based
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on the Reynolds analogy, but the validity of
this technique demands particular boundary
conditions which do not, in general, occur in
gas turbines. Also, the results of Kapinos are
not in accord with the experimental findings of
Kreith et al. [4] and Mitchell [5].

The fluid dynamics of the disc rotating near
an unshrouded stator, [6] Fig. lc, and a
shrouded stator, [7] Fig. 1d, have been investi-
gated by Bayley and Owen. The shrouded
system is closer to an air-cooled gas turbine
rotor where a peripheral shroud is used to
control the egress of coolant and to prevent
the ingress of hot gas. In this paper attention is
focussed on the unshrouded system, and the
analysis of the fluid dynamics of [6] is extended
to include heat transfer for the case of a forced
radial outflow of coolant. It is believed that
knowledge of this relatively simple model will
serve as a foundation to the understanding of
the more complex practical systems.

2. THE BOUNDARY LAYER EQUATIONS
2.1.The basic equations
Expressed in cylindrical polar coordinates
for a steady, incompressible, axi-symmetric
flow, the radial and tangential momentum
equations can be written [1]

v, v, V2> dp ot
vty plr_le)_ _EF_
"('ar + £ oz dr ' oz (1)
ov, av, V.V 0t
vy ey Tetr)  Yle
p<,ar+ﬁaz+r) s )

where V,, ¥, and V; are the velocity components
in the radial, tangential and axial directions,
respectively, p is the static pressure and p is
the fluid density. For turbulent flow the equa-
tions are valid if time-average values are used,
and the radial and tangential shear stress
components, 7, and 1, respectively, are given by

A
Tr=:u_6—z—'—erV2‘ (3)

and

1137

oV
T = nt = pV,V: @)
where p is the fluid viscosity. For laminar flow
the velocity fluctuations, represented by primes
in equations (3) and (4), vanish.
The continuity equation can be written

10 aV.
S5 V) + 5 =0 (5)

and the energy equation can be expressed as

8T _ oT og oV,
C, |V.— = == r
p”('ar-}—V'az) 6z+r’52
ov,

+r¢—éz—¢, (6)

where C,, is the specific heat at constant pressure
and T the temperature. The heat flux, g, is
related to the temperature by

0T ey
g= - (/152— - pC,T V.-) (7

where 4 is the thermal conductivity of the fluid,
and the turbulence terms are zero for laminar
flow.

2.2. The effective viscosity model

A two-component effective viscosity model
has been used to good effect in the prediction
of the fluid dynamics for this flow system, see
[6]). The Prandtl mixing-length theory was
employed in its simplest form where:

av,
Hrete = P+ o=+ P | == (®)
z
and
ov,
Hoerr = 1+ Bg o= 1t + pl 6—;) ©)
The shear stresses were given by:
oV,
T, = #r.efra‘: and Ty = py o ‘522 (10
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A simple ramp distribution of the mixing-length
I was assumed such that:

O<zg<ay/K: =Kz
wy/K<z<s ~ay/K: I =ay (11)
s—ay/K<z<s: I=K(s-12)

where s is the distance between the rotating
disc and the stator.

The constants o, y; and K were varied over a
range of values, and it was found that o« = 012,
y, = 5/2, and K = 04 gave the best prediction
of moment coefficient and pressure distribution.
The same constants will be used for the heat-
transfer calculations.

Near the rotating disc and the stator the
mixing-length is assumed to decay exponentially
according to van Driest’s hypothesis [10]. The
two-component effective viscosity model enables
use to be made of the wall flux relations of
Patankar and Spalding (8] for the wall shear
stresses and, as will be shown later, the wall
heat flux. It is now proposed to introduce an
effective conductivity, 4., where

aT
eff az

; oT o 0T
/VC“E< —a——pC TV)/aZ.

[2] shows that a strong correlation exists
between equations (2) and (6), and as a con-
sequence heat transfer is strongly related to the
tangential shear stress. It is therefore proposed
that—just as for laminar flow (where A = uC,/Pr)
—the effective conductivity can be expressed as:

Aete Ho.1
C Pr,

For fully developed turbulent flow Pr — Pr,
Kestin and Richardson [9], in their compre-
hensive review of heat transfer in turbulent
boundary layers, suggest that whilst experi-

g=—2 (12)

and

(13)

_ Heerr _ K

(14)

4
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mental measurements of Pr, through a boundary
layer are inconclusive, a constant value can be
used as a reasonable approximation. In the
majority of the following calculations the
turbulent Prandtl number is taken as unity,
although the effect of non-unity values of Pr,
is discussed.

2.3, The transformed equations

It is convenient to transform the boundary
layer equations-from r, z coordinates to & ¥
coordinates using the von Mises transformation
where :

1 oy

1oy,

proz’ pr or and ¢ =r.

f=

Equations (1), (2) and (6) can now be written
av, 1 dp ot, V¢

&= waet Ty tw W
Wo_ (% _Ye
2% ra‘/, (16)
oT _ [_oa, oV, oV
Cl’aé‘r[ EVREY ] a7

Using equations (15) and (16), equation (17) can
be rewritten as

g 2 4 1y2 p
a§<CT+2V V¢+;

= rw( q+ Vir, + Vyry).
Equation (18) can be simplified if the radial
terms are negligible. Close to the rotating disc,
where frictional effects can be significant,
Vs >V, and 74 > 7, It was shown in [6] that
the pressure distribution was, for most cases
of interest, more strongly affected by the mass
flow rate, W, than by the rotational speed, thus

_ld_P=0<vf‘_‘7r

(18)

ar )where V. = W/Q2rprs).

If the radial velocity is relatively small, as is
the case for air-cooled turbine rotors, the terms
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0 (12, P _?_
55(5‘/, +;> and r az//(V’T’)

can be neglected in comparison with the other
terms. Under these conditions equation (18)
can be simplified by introducing the new
variables

h=C,T + %Preffo, (19)
and
n=yi (20)
where
Y =J %dz = W/2r. 21
0z
0

Hence from these definitions, and using the
effective viscosity model, equation (18) becomes

o2 [t
o¢ W’ on | " Pregc On

0
— (= Pra) V¢‘a%- 22)

Similarly, using equation (20) and the effective
viscosity models, equations (15) and (16) can
be rewritten as

1 dp V2

av, $
3 iz, @

_prtd L
g = -W—Zan rHy, et an -
0 prt 0 ov,
( V¢) a;z (Vr,urp,eff—gi)'

Equations (22)-(24) are the equations that will
be solved numerically.

(24)

2.4. The Reynolds analogy

For the case of Pr= Pr,= Prg = 1, the
analogy between equations (22) and (24) is
complete if the initial and boundary conditions
are similar. For a quadratic temperature rise
over the rotating disc radius and for an isother-
mal stator the boundary conditions become
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n=0:rV; =0’ hy=cor

n=1:rV, =0,

where the subscripts 0 and s refer to the rotor
and stator, respectively, and ¢, is a constant.
Under these conditions the distribution of
tangential velocity and enthalpy are similar,
hence

h, = constant

-5 _ ¢ 2
ho —h,  wr 23)
and as
4 1772
q=— #¢,=rfa(h - 7V¢) (26)
it follows from equation (25) that
v ho — hy
q =V — °wr @7
thus
o
go= —22[CT, — T) — 3™’} (28)
For an adiabatic disc, ¢, = 0, and
TO,nd = 7; + %ﬂ)zrz/cp (29)

which agrees with the resuit obtained in [2]
despite the fact that the radial dissipation has
been ignored in the present case. It would
therefore appear that the neglect of radial
effects should not reduce the generality of
the solution procedure.

3. NUMERICAL SOLUTION OF THE BOUNDARY
LAYER EQUATIONS

3.1. The numerical method

The techniques used to solve equations
(22)24) are an extension of the method em-
ployed to solve the momentum equations in (6).
The fluid dynamics predictions had been com-
pared with results from an experimental rig at
the University of Sussex where a 30 in. dia.
disc was rotated up to 4500 rpm close to a
stator of the same diameter. In those calcula-
tions it was found that 50 radial steps, from
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rirg =032 to r/ry =1, and up to 120 cross-
stream steps, for gap ratios up to G = 0’12
(where G = s/rg), were necessary in order to
achieve a satisfactory momentum balance. Initial
distributions of radial velocity were based upon
a 4#th power law pipe flow, and the tangential
velocity distribution decayed from wr on the
disc to zero on the stator according to a 3th
power law. For the calculation of heat transfer,
the distribution of enthalpy was assumed to be
similar to the distribution of tangential velocity
at the starting radius. The implicit finite-
difference method used, that of Spalding and
Patankar, [8] could be made more efficient by
the use of wall flux relations obtained from the
solution of the ordinary differential equations
resulting from the Couette flow close to a wall.
Just as it had been necessary to modify these
relations close to a rotating disc for the fluid
dynamics problem, so it was found necessary
to make allowances for rotation in the heat
transfer problem.

3.2. Calculation of the wall fluxes

Near an impermeable wall, either the stator
or the rotating disc, use is made of the van
Driest hypothesis [ 10] for the effective viscosity
in equation (9) and it is assumed that

ol = 1+ 252[1 — exp (~z3/zy 4*)]?

x |oV%/0z%| (30)
where
2% = Kz, |74, H 0 (31a)
T = Ty/Tyw (31b)
Vi =KV, al(ty, w/p) (31c)

The subscript w is used to refer to the wall,
either rotor or stator, and z,4 and V, ., are
the distance and velocity, respectively, relative
to that wall. V, . = V, — wr.z,yq = z near the
rotor, and V; ., =V, — or, z,, = s — z near
the stator. K is a mixing-length constant, and 4*
is a damping constant. From equation (2) it is
apparent that the convection terms tend to zero

M. OWEN

near the rotor and the stator, and so close to the
rotating disc, in the so-called Couette flow
region, the tangential shear stress tends to the
wall value, such that 7, = 7, . Similarly on the
stator, 74 = 1, ,, and so for rotor or stator

P, e 4V _

=1 2
pno dzh ! (32)

* _
h =

Substituting equation (32) into equation (31)
produces

v 2

dz% 1+ {1 + 4237 [1 — exp (— 23 A% )F
(33)

Numerical solutions to equation (33) can be

found in [8] and the answers express the wall

shear stress in terms of the local Reynolds

number such that:

§3 = toulK?pV3 )= R —

— 01561 R% 45 + 008723 R}~

+ 003713 RE™18  (34)

where
Rz =p Vd). relzrele./’:u‘

For the case of the energy equation, application
of the van Driest hypothesis gives the result:

%*2
2o
Pr,

/Jd),eff _ _1_
UPry; ~ Pr
2/dv

x {1 —exp [—z3(Jth)4*] ¢ [ =2
dz}

If, by analogy with equation (32), we can define
a new variable h* such that:

(35)

Hoatr ST (36)
UPr e dz%

then equations (35) and (36) combine to give:
dn*
dz§
Pr,
" PryPr+ z32[1 — exp(—z%/A*)]* (dV¥/dz%)
(37)
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The solution to equation (37) is expressed in

[8] as

S¥ = 5
"7 Pr[1 + 368 S§3(Pr/Pr) (Pr/Pr, — 1)]
(38)
where
St = Wé;ﬁ (39)
and we define h* as
h* = K Ah(|t, .|0)? /g, (40)

It is now necessary to derive an expression for Ah.

3.3. The motivating temperature difference for
heat transfer near a rotating disc
In the Couette-flow region near the rotor, if
the convection terms are small compared with
the flux, equation (22) simplifies to:

16 1
which implies that
g~V =qo — 4,00 (42)
For an adiabatic disc g, = 0, hence
daa = T4,0Vp.ret (43)

where
Td’ = f¢‘0 and Kp,rel = V¢ -— V¢§ 0>

subscript ‘ad’ referring to the adiabatic condi-
tion. Equation (43) can be written as

_ Heg, eff_ %
Pr, 0z (C ) = Hg, et 3z Vé. rel- (44)
Hence
3 0
Cp(TO,ad - ad) = § Preff d(%V;,rel)v (45)

which can be evaluated approximately by
noting that Pr, only deviates significantly
from Pr, in the region where V, ., is small
and the value of the integral is correspondingly
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small, Thus equation (45) can be approximated
by:

Cpr."},ad = Cp:’;d + %PrtVi, ret (46)

It is interesting to observe the similarity between
equations (46) and (29) for Pr, = 1.
We now define a variable i such that
h= C,T + iPrVi o @n
and from equations (42} and (43} it follows that:

Bostt & G F) = go

Pry d 48)

Comparing equations (48) and (36) we see that
* = Ko — B ([74.010)/00,  (49)
or
Ah=Fh, - R
A similar argument applied to the stator, where
Vd’, rel = V¢’ y1€1dS
Ah =R — T, (51)

Using Ah, as calculated from equations (50) or
(51), the heat flux through the rotor or stator
can be evaluated from the wall flux relation,
equation (38).

(50)

4. TESTING THE NUMERICAL METHOD

Before comparisons with experimental data
can be made it is necessary to check that the
Reynolds analogy conditions (T, = ¢or*, T, = 0,
Pr = Pr, = 1) should produce similar enthalpy
and tangential velocity profiles, and that the
wall fluxes should be compatible. For the case
of zero dissipation and of finite dissipation
these conditions were fully satisfied by the use
of h* given in equation (49). This consistency
is a necessary condition for accuracy, but the
accuracy of predicted Nusselt numbers can be
no greater than the accuracy of the predicted
frictional moment coefficients.

As a direct consequence of the Reynolds
analogy, the local Nusselt number, Nu, is
related to the shear stress by
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Ny = — 9.0 (52)
e
where
4ot
Nu=—"F (53
ATy — Tond )

For non-unity Prandtl numbers and arbitrary
disc temperatures (T, = c,r", n being the arbit-
rary exponent and ¢, a constant) Dorfman [1]
obtained solutions of the integral equations for
the free disc and showed that

Nu(Pr.n) = Nu(Pr = 1,n = 2)
£ o2
x Pros [MJ L (54

46
™ r/r,=032
@ r/r,=055 Nu (n) fvw(n=2) T.=c r”
3 r/r,=0-78

12

@ Free disc (Dorfman)

F16. 2. Effect of disc temperature distribution on local Nusselt
numbers for G = 0003, C,, = 2'5 x 10% Re = 4 x 10°.

For comparison, numerical integration was
conducted for the case of a disc rotating near
an isothermal stator with a radial outflow for
Pr =1 and a range of exponents —3 < n < 3.
As the integration was commenced assuming

J. M. OWEN

complete similarity between the initial enthalpy
and tangential velocity distributions, any index
other than n = 2 produced a developing flow
condition in which the temperature and velocity
distributions became progressively different.
The divergence increased with increasing radius,
and the rate of divergence varied according to
the value of n.

K r/{ =0-60
o-4af—
02—
r/r. =046
| i \ |
0 02 03 06 0-8 0
z/s

Fic. 3. Effect of radially decreasing disc temperature on axial
temperature profiles for G = 0:03. C, =25 x 10% Re =
4 x 108,

In the ensuing calculations the turbulent
Prandtl number is assumed to be unity. and the
axial gap is characterised by a gap ratio, G. and
the mass flow rate is described by a mass flow
coefficient, C,, = W/(ur,). Figure 2 illustrates
the effect of disc temperature distribution on
Nusselt number at different radial positions for
a starting radius ratio of #/r, = 0-3. The effect
of radial position is more evident for negative
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values of n, and at a radius ratio of r/ry = 078
heat transfer from the rotating disc is prevented
for n < —26. The fact that the value equals
the critical index in equation (54) is coincidental :
the critical index will be smaller for larger radii
and vice versa.

Figure 3 shows the developing temperature
profiles for n = —3 where, in order to show
the effect of disc temperature profile without
frictional heating complicating the picture,
dissipation is neglected. Whilst the temperature
gradient at the disc surface is originally favour-
able for heat transfer from the disc, it gradually
becomes smaller and eventually reverses. After
reversal heat removed from the disc at the smaller
radii is dumped back in at larger radii, the latter
effect occuring despite the ostensibly favourable
temperature difference between the rotor and
stator. It should be noted that frictional heating
would accelerate this heat reversal. Whilst
negative values of n cannot occur under steady-
state operation of gas turbines they can occur
when the engine power is reduced and the turbine
blades, and hence the disc tip, begin to cool.
Under these circumstances, the failure of the
coolant to remove heat from the disc tip would
help to slow down the blade cooling, and could
therefore prove advantageous.

An undesirable situation would occur if heat
transfer from the disc were to be reversed during
steady-state operation. This could happen if
the coolant temperature were not low enough to
prevent frictional heating of the rotor. The
effect is illustrated in Fig. 4 for an isothermal
rotor where, owing to the rapid decay of the
tangential velocity near the rotating disc, dis-
sipation terms are only significant very close
to the rotor. Although the temperature profile
gradually changes with increasing radius, the
gradient only reverses in the ‘“Couectte-flow”
region : outside of this region heat is transferred
away from the disc, whilst inside it is transferred
into the disc. Disc heating commences at r/r, =
059 despite the apparently favourable gradient
existing away from the disc surface, and dissipa-
tive heat not conducted through the disc itself
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r/r,=0-6

F1G. 4. Effect of frictional heating on axial temperature profiles
for G = 003,C, = 25 x 10* Re = 4 x 108,

serves to raise the bulk temperature of the flyid-
The effects of heat reversal due to disc tempera-
ture distribution and to frictional heating for the
case of laminar impinging flow on a free rotating
disc have been calculated by Mabuchi et al. [11].
The numerical results obtained for the present
system are qualitatively similar, but frictional
heating is much more local in turbulent flow
than in laminar flow owing to the steeper
gradients associated with the former case.
The effect of Prandtl number on heat transfer
for T, = cor? isillustrated in Fig. 5 by the ratio of
Nu(Pr)/Nu(Pr = 1) for 0'5 < Pr < 8, where

9o av 70

Nu= 920
)'(TO - TO? ad)av

(55)

and

2 [
dorav = -3 ‘- rqo dr. (56)
To" o
It can be seen that although the effect of
Prandtl number does depend upon the flow
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FI1G. 5. Caiculated effect of Prandtl number on the mean Nusselt number for a range of flow
parameters.

characteristics of the system, for gases {Pr < 1)
Dorfman’s correction is a good approximation.
For large Prandtl numbers the accuracy of the
approximation appears to depend more on
Reynolds number than the other parameters.
As at large Reynolds numbers the moment coef-
ficients, measured and calculated, for this system
tend to those of the free disc, it would appear that
application of the free disc correction is more
valid for Re > 10°.

It should be pointed out that calculations
were carried out for a range of Reynolds numbers
with Pr = 1. and Pr, varied between 06 and 1.
It was observed that for Pr, = 0'8 the mean
Nusselt number increased by 8 per cent at Re
=4 x 10°to 11 per cent at Re = 4 x 105, com-
pared with the values for Pr, = 1. A similar
increase over the valuesat Pr, = 0-8 was observed
for Pr, = 0'6. Kestin and Richardson [9] have
noted that most heat-transfer theories either
assume Pr, = 1, or assume a constant value,
say Pr, = 078, in order to obtain acceptable
predictions. No firm recommendation can be
made for the present system until more experi-

mental data are available.
The behaviour of the numerical solutions for

arbitrary disc temperatures, arbitrary Prandtl
numbers. and with frictional heating, is con-
sistent—if not identical— with that found for
the free disc. It would therefore appear that
the solutions of equation (22) are compatible
with free disc calculations, and it remains to
verify that the solutions obtained agree with
experimental results.

In Fig. 6 the calculated Nusselt numbers are
compared with the experimental data of Kapi-
nos[3]. The experiments were conducted on a
645 mm dia. disc, placed at distances of from 88
to 115 mm from a stator, and rotated up to 3500
rpm. The numerical solution shows better agree-
-ment at larger gap ratios and larger Reynolds
numbers, and the relative increase of Nusselt
number with increasing mass flow rate is
predicted with reasonable accuracy. At low
Reynolds numbers the calculated Nusselt num-
bers tend to become more dependent on mass
flow rate and less dependent on roiational speed.
This effect is consistent with the Reynolds
analogy [2] applied to the moment coefficients
of Bayley and Owen [6]. and is in qualitative
agreement with the results of Kreith et al.[4] and
Mitchell [5].
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It should also be pointed out that some of
the experimental values used for comparison in
Fig. 6 were obtained by extrapolating Kapinos’
empirical correlation outside of its verified range.

Although no experimental local Nusselt num-
bers are available for comparison, Fig. 7 shows

. ¢,=10

Calculated ¢, =5x10°
c,=10°

Kapinos e C.=5X(0%

I

Fi1G. 6. Comparison of calculated mean Nusselt numbers with
the empirical correlation of Kapinos.

numerically calculated results for a gap ratio
of G = 0-06 and a mass flow rate of C,, = 5 x
10* The local Nusselt numbers, plotted for a
range of Reynolds number, are compared with
the free disc result based on the Reynolds analogy
applied to von Karman’s calculated moment
coefficient where

Nu = 00267 (r/rg)t'® Pro¢ Re®8.  (57)

1145

The calculated Nusselt numbers are, as would
be expected, larger than the free disc values, al-
though the trends are not significantly different.

Although the results of the numerical method
are encouraging, it is apparent that more experi-
mental data are necessary before rigorous tests
can be applied to check the quantitative accuracy
of the boundary layer model and its method of
solution. A programme of research into the heat

Numerical solution

______Free disc, equation (57)

Re=4x10°

Re=2x10°

o4 05 06 07 08 09 o)
r/r,
Fi1G. 7. Local Nusselt numbers for G = 006, C,, = 5 x 10%,
Pr =072

transfer from a rotating disc is currently in
operation in the Mechanical Engineering Lab-
oratories at the University of Sussex, and it is
hoped that future experimental data will provide
a useful testing ground for the existing calcula-
tion procedure.

CONCLUSIONS

The Spalding-Patanker numerical integration
procedure [8] has been applied to heat transfer
from a disc rotating near a stator, with a radial
outflow of coolant, and the principal conclusions
to be drawn are as follows:

(i) For the case of an isothermal stator (T, =
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(i)

(v)

J. M. OWEN

constant) a quadratic temperature distri-
bution over the rotating disc (T, « r?), and
unity Prandtl numbers (Pr = Pr, = 1), the
Nusselt numbers calculated by the numeri-
cal procedure are in exact agreement with
the Reynolds analogy.

For arbitrary disc temperatures (T; o r") the
Nusselt number, whilst being radius-depen-
dent. behaves in a manner consistent with
Dorfman’s free disc result [1]

n+ 2'6] 0-2

Nu(n) = Nu(n = 1)[4—‘6 .

The effect of arbitrary laminar Prandtl
numbers (Pr, assumed unity) on the Nusselt
number was found to be dependent on
Reynolds number. For Re > 10°, the results
can be approximated over the range 05 <
Pr < 2 by Dorfman’s free disc result

Nu(Pr) = Pr%% Nu(Pr = 1).

Frictional heating due to tangential dis-
sipation was included in the solution pro-
cedure,and theeffects of thisare qualitatively
similar to the predictions of Mabuchi et al.
[11] for forced laminar flow over a free
disc.

For high values of Reynolds numbers (Re
> 10%) the calculated mean Nusselt num-
bers tend to the experimental results of
Kapinos [3]. Atlow Reynolds numbers, and
at the smaller gap ratios (G < 0-06), the
calculated Nusselt numbers show more
dependence on mass flow rate, C,,, and less
dependence on Re than the results of
Kapinos. The calculated results at low
Reynolds numbers are therefore qualita-
tively similar to the experimental findings of
Mitchell [5] and Kreith et al. [4].

(vi) Although no experimental values of local

Nusselt number are currently available,
the calculated values show that the effect
of forced flow is to increase the local heat-
transfer rate compared with that of a free
disc. The relative increase will, however,
depend on the gap ratio, the mass flow rate
and the rotational speed or the system under
consideration.
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EFFET D'UN ECOULEMENT FORCE SUR LE TRANSFERT THERMIQUE DEPUIS UN DISQUE
TOURNANT PRES D'UN STATOR

Résumé—Cet article décrit 1'application de la méthode d’intégration numérique de Spalding-Patankar au
cas du transfert thermique depuis un disque tournant refroidi par air, proche d’une enceinte stationnaire.



HEAT TRANSFER FROM A DISC

Les calculs sont conduits afin de montrer I’effet sur le transfert thermique de I'échauffement par frottement

des distributions arbitraires de température du disque et des nombres de Prandtl non unitaires. On montre

que ces effets sont qualitativement similaires 4 ceux prédits par Dorfman pour un disque libre. Des nombres

de Nusselt moyens, calculés pour un domaine de paramétres d'écoulement, tendent vers la formule empirique

de Kapinos pour des grands nombres de Reynolds mais divergent pour des plus petits nombres de Reynolds.

Cette divergence est en relation avec la faible dépendance du nombre de Nusselt & la vitesse rotationnelle
notée par Mitchell et Kreith pour des petits nombres de Reynolds.

DER EINFLUSS VON ERZWUNGENER STROMUNG AUF DEN WARMEUBERGANG AN
EINER SCHEIBE, DIE NAHE EINES STATORS ROTIERT

Zusammenfassung—Die Arbeit beschreibt die Anwendung der numerischen Integrationsprozedur nach
Spalding—Patankar auf den Wirmeiibergang an einer luftgekiihiten Scheibe, die nahe eines feststehenden
Gehiiuses rotiert. Die Rechenergebnisse zeigen den Einfluss von Aufheizung durch Reibung, von beliebigen
Scheibentemperaturverteilungen und von Prandtl-Zahlen # 1 auf den Warmeiibergang. Es zeigt sich,
dass diese Einfliisse jenen qualitativ dhnlich sind, die von Dorfman fiir die freie Scheibe vorausgesagt
wurden. Mittlere Nusselt-Zahlen, die fiir eine Reihe von Strdmungsparametern berechnet wurden, stimmen
mit der empirischen Korrelationsformel von Kapinos fiir grosse Reynoldszahlen iiberein, weichen jedoch
bei kleinen Reynoldszahlen davon ab. Diese Abweichung steht in Einklang mit der schwachenAbhéngig-
keit der Nusselt-Zahl von der Winkelgeschwindigkeit bei kleinen Renolds-Zahlen, wie sie von Mitchell
und Kreith gefunden wurde.

BJIUAHUE BBIHVKIEHHOTO TEYEHUA HA IIEPEHOC TEIIJIA
OT IUCHKA, BPAITAIOHIETI'OCA BO3JE CTATOPA

AnHoTanMA—B cTaThe ONMCHIBAETCA NpHMMEHEHUE MeTOfla YMCJIeHHOTO HHTeTPUPOBAaHUA
Coonmuura-Tlarankapa [gifA cay4Yad NepeHoca Temja OT OXJAMKIAeMOro BO3[yXOM MMCKA,
BpAlAIOLIErocs BO3IE CTanuoHapHOW creHku. IIpuBojaTcs pacdyéTel, @A TOro0 4YTOOH
MOKA34Th BIMAHME HA TEILIOOOMEH a3pOJMHAMNYECKOr0 HArpeBa, MPOM3BOJBHOTO pacmpefie-
JIeHUsA TeMIeparypH AMCKA ¥ OoTkioHeHnsa uncia Ilpamaraa or emmnuuu. Hpome Toro
MOKa3aHO, YTO 3TN 5PPEKTH KAYECTBEHHO COTJACYITCA ¢ pedyibTaramu pacuéra Jopdmana
st csoGoguoro pgucka. Cpenuue ynciaa Hyccembra, paccunTaHHbe A KAKOT0-TO JMANA30HA
napaMeTpoB, NpHGIMKAITCA K BMIIMPHYECKMM COOTHOWeHMAM Hammumoca mpu Goabmmx
yucyax PeiHOMBACA, HO OTKIOHAIOTCA OT HUX NPM MAJHIX unciax PeitHoapica. 310 pasanune
CBABAHO cO cjaboit 3aBucUMOCThI0 Yncia HyccempTa OT CKOPOCTM BpalleHNUs, 3aMeYeHHON
Muryessiom n Hpeitcom mpu mansx 4uciax Peitnosbaca.
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